Reviews

Driven Sports Splyce Review

Driven Sports Splyce

Splyce is a BCAA-based formula by Driven Sports which also contains Betaine (Trimethylglycine),Taurine, and a much rarer ingredient, FractoFuse…

 

[gard group=’1′]

Splyce is a BCAA-based formula by Driven Sports which also contains Betaine (Trimethylglycine),Taurine, and a much rarer ingredient, FractoFuse…[Skip to the Bottom Line]

LEUCINE:

Leucine is an amino acid that belongs to the group known as branched chain amino acids (BCAAs). In most BCAA products, there is a higher concentration of Leucine than the other two BCAAs. The most common ratio, the ratio found in Splyce, is 2:1:1 with the higher weight being Leucine. While there is no reliable scientific evidence to indicate one true “optimal ratio”, several studies have confirmed that Leucine is the most important BCAA in regards to muscle protein synthesis. Supplemental Leucine has been shown to increase protein synthesis in rats as well as humans in dozens of studies. A 2012 study found that supplementation with 12 g of L-leucine per day resulted in improved protein synthesis in elderly males consuming a low protein diet, indicating that it may be especially useful for those with low protein intake.

Since Leucine is the most studied of the three BCAAs, its mechanism of action has been established. Leucine works via activation of Mammalian Target of Rapamycin (mTOR) which is a signaling protein that signals the body to synthesize protein. To put it simply, Leucine activates mTOR which in turn stimulates protein synthesis. The exact amount of Leucine present in the Splyce formula is unknown, but we estimate it contains 2-4 grams.

TAURINE:

Contrary to popular belief, Taurine is not a stimulant but rather an an amino acid with anti-oxidant properties. In a 2011 study, Taurine was shown to significantly decrease oxidative stress in skeletal muscle following exercise. Prior to that, a 2004 study showed that Taurine may decrease exercise induced DNA damage, as well as “enhance the capacity of exercise due to its cellular protective properties”. A recent 2013 study noted a 1.7% improvement in 3k-time trial of runners after supplementing with Taurine, but noted that more research would be required to determine the exact mechanism of action.

It’s unfortunate that Taurine has developed a sort of stigma because of its inclusion in energy drinks. While Taurine does not provide “energy” in the way that caffeine does, several studies have shown its effectiveness as an antioxidant with workout-enhancing properties, and while the exact mechanism of action remains unknown, it appears likely that Taurine may improve exercise performance by reducing some of the cellular oxidative damage that generally leads to fatigue. The usual dose of Taurine used for performance enhancement is about 1 gram, though the exact dose present in the Splyce formula is unknown.

BETAINE ANHYDROUS:

Betaine Anhydrous, also known as Trimethylglycine, is primarily found in Beets (hence the name), but has recently gained popularity in the supplement community for its potential ergogenic effects. A 2010 study from the Journal of the International to Society of Sports Nutrition found that daily supplementation with 2.5g (1.25g twice daily) of Betaine positively influenced strength and power, but did not determine a mechanism of action. A 2011 study, published in the “Journal of Strength and Conditioning Research”, found that subjects who consumed 2.5 grams of betaine daily for 14 days were able to achieve more repetitions while bench pressing. The researchers in this study also noted signs of increased muscular oxygen consumption (a first step towards findings a possible mechanism of action). A 2013 study, published in “Journal of the International Society of Sports Nutrition” found that 6 weeks of daily Betaine supplementation improved body composition, arm size, bench press work capacity as well as power (but not strength).

While these results are certainly encouraging, it should be noted that Betaine supplementation, at the standard 2.5g/day doses, has also failed to increase power output more than once. Currently, the reason for these discrepancies is unknown, but it appears there may be “responders” and “non-responders” to Betaine supplementation. The responder/non-responder dichotomy is something that users of Creatine may be familiar with, and just as with Creatine, the only way to find out which one you are is to give it a shot. When Betaine works (and it usually does)…it’s quite noticeable.

The minimum scientifically validated dose of Betaine is 2500mg, which is more than what is likely present in the Splyce formula. Lower doses may still be effective, but have not been tested at this point with regards to performance enhancement.

ISOLEUCINE:

While Leucine is the most important with regards to muscle protein synthesis, Isoleucine appears to have unique benefits regarding glucose uptake by muscle cells (while lowering blood glucose). In several rat studies, Isoleucine has effectively lowered blood glucose and increased glucose uptake into muscle cells. While the effect of Isoleucine (in isolation) on muscle glucose uptake has not been studied in humans, BCAAs in general due appear to induce glucose uptake, and based on the rat studies this may be due to Isoleucine more so than the others.

VALINE:

Valine appears to possess the least unique benefit, but there are claims circulating that Valine may reduce mental exercise-induced fatigue by reducing the amount of Tryptophan available for Serotonin synthesis. A 2001 study concluded that Valine lowered the amount of exercise-induced 5-HT (Serotonin) in mouse hippocampuses. During exercise Tryptophan is transported to the brain where it is converted into Serotonin. It is hypothesized that Serotonin is responsible for mental fatigue. It has also been established that BCAA directly compete with tryptophan for the same pathway to the brain, and therefore may reduce the amount of Tryptophan available for Serotonin production. This would explain certain subjective anti-fatigue effects of BCAA supplementation noted in a few studies. However, the claim that Valine is solely responsible for this effect is unsubstantiated by human studies. Given the current literature, it appears more likely that BCAAs in general help to attenuate fatigue.

BCAAs IN GENERAL:

A 2004 study conducted by the American Society for Nutritional Sciences found that BCAA requirement was significantly increased by exercise and that supplementation had “beneficial effects for decreasing exercise-induced muscle damage and promoting muscle-protein synthesis”. A second study, published in the “American Journal of Physiology-Endocrinology and Metabolism”, found that while BCAA intake did not seem to affect amino acid concentration during exercise, it did have a protein-sparing effect during recovery. If you consume a diet rich in complete proteins, then you already receive enough dietary BCAAs to fulfill all normal physiological functions. However, this in no way means you cannot derive added benefit from supplementing with BCAAs.

A 2009 study published in the “Journal of the International Society of Sports Nutrition” tested the effects of BCAA supplementation in comparison to whey protein supplementation or simple carbohydrates (from a sports drink) in athletes. All subjects consumed the same diet and participated in the same physical training regimen. At the end of the 8 week study, the BCAA group significantly outperformed both the whey group and carbohydrate group in terms of lean body mass as well as strength. Results like these make us question whether skeptics of BCAAs have even bothered to read the literature. There is more than enough evidence to conclude that BCAA supplementation can have a significant anabolic effect in both protein deficient AND non-protein deficient humans.

A major criticism of BCAA supplements is that Leucine alone can achieve a significant increase in muscle protein synthesis. While Leucine does appear to be the most critical in regards to muscle protein synthesis, a 2009 study published in the “Journal of the International Society of Sports Nutrition” concluded that BCAAs (2:1:1) have a more pronounced effect on protein synthesis than the same amount of Leucine alone. So, theoretically speaking, if you had to choose, you would choose Leucine, but all three is undeniably a better way to go.

FRACTOFUSE (ALPHA LACTALBUMIN):

Fracto Fuse is a patented from of alpha- lactalbumin, a peptide found in human breast milk that is particularly scarce in cow’s milk. Alpha- lactalbumin, when included in baby formula, has been shown to enhance growth more so than baby formula with higher protein content but no alpha- lactalbumin. Though the mechanisms of action are still not well understood, some researchers have pointed to the BCAA ratio found in alpha- lactalbumin, which would explain how it could outperform formulas with more protein.

Whether alpha- lactalbumin will increase muscle mass in healthy adult humans remains to be seen, but the preliminary evidence suggests that this peptide plays a particularly important role in growth, and may have benefits beyond that of ordinary proteins.

THE BOTTOM LINE:

Splyce is one of the more effective intra-workout supplements on the market because it contains more than just BCAAs. The addition of Betaine and Taurine help to separate the formula from the average BCAA supplement, but the use of alpha- lactalbumin is something we haven’t seen before in any intra product. Ultimately, the combination of all these ingredients is what makes Splyce one of the best intra-workout products available, and while we generally recommend standard BCAAs (because their cheap and effective), those looking for a little something extra in their BCAA supplement should give Splyce a shot. At about 80 cents per serving, Splyce is more or less appropriately priced, considering the additional ingredients beyond BCAAs.

REFERENCES
  1. Tipton, Kevin D., et al. “Stimulation of muscle anabolism by resistance exercise and ingestion of leucine plus protein.” Applied Physiology, Nutrition, and Metabolism 34.2 (2009): 151-161.
  2. Heine, Willi E., Peter D. Klein, and Peter J. Reeds. “The importance of alpha-lactalbumin in infant nutrition.” The Journal of nutrition 121.3 (1991): 277-283.
  3. Lien, Eric L. “Infant formulas with increased concentrations of α-lactalbumin.”The American journal of clinical nutrition 77.6 (2003): 1555S-1558S.
  4. Hoffman, Jay R., et al. “Effect of 15 days of betaine ingestion on concentric and eccentric force outputs during isokinetic exercise.” The Journal of Strength & Conditioning Research 25.8 (2011): 2235-2241.
  5. i, Cheng, Masao Shinohara, John Kuhlenkamp, Christine Chan, and Neil Kaplowitz. “Mechanisms of Protection by the Betaine-homocysteine Methyltransferase/betaine System in HepG2 Cells and Primary Mouse Hepatocytes.” Hepatology 46.5 (2007): 1586-596.
  6. Trepanowski, John F., et al. “The effects of chronic betaine supplementation on exercise performance, skeletal muscle oxygen saturation and associated biochemical parameters in resistance trained men.” The Journal of Strength & Conditioning Research 25.12 (2011): 3461-3471.
  7. Hoffman, Jay R., et al. “Effect of betaine supplementation on power performance and fatigue.” Journal of the International Society of Sports Nutrition 6.1 (2009): 1-10.
  8. Cholewa, Jason M., et al. “Effects of betaine on body composition, performance, and homocysteine thiolactone.” Journal of the International Society of Sports Nutrition 10.1 (2013): 39.
  9. Lee, Elaine C., et al. “Ergogenic effects of betaine supplementation on strength and power performance.” J Int Soc Sports Nutr 7 (2010): 27.
  10. Doi, Masako, et al. “Isoleucine, a blood glucose-lowering amino acid, increases glucose uptake in rat skeletal muscle in the absence of increases in AMP-activated protein kinase activity.” The Journal of nutrition 135.9 (2005): 2103-2108.
  11. Doi, Masako, et al. “Isoleucine, a potent plasma glucose-lowering amino acid, stimulates glucose uptake in C2C12 myotubes.” Biochemical and biophysical research communications 312.4 (2003): 1111-1117.
  12. Norton, Layne E., and Donald K. Layman. “Leucine regulates translation initiation of protein synthesis in skeletal muscle after exercise.” The Journal of nutrition 136.2 (2006): 533S-537S.
  13. Anthony, Joshua C., Tracy Gautsch Anthony, and Donald K. Layman. “Leucine supplementation enhances skeletal muscle recovery in rats following exercise.”The Journal of nutrition 129.6 (1999): 1102-1106.
  14. Casperson, Shanon L., et al. “Leucine supplementation chronically improves muscle protein synthesis in older adults consuming the RDA for protein.”Clinical Nutrition 31.4 (2012): 512-519.
  15. Shimomura, Yoshiharu, et al. “Nutraceutical effects of branched-chain amino acids on skeletal muscle.” The Journal of nutrition 136.2 (2006): 529S-532S.
  16. Shimomura, Yoshiharu, et al. “Exercise promotes BCAA catabolism: effects of BCAA supplementation on skeletal muscle during exercise.” The Journal of nutrition 134.6 (2004): 1583S-1587S.
  17. MacLean D.A..Graham,T.E. and B. Saltin. “Branched-chain amino acids augment ammonia metabolism while attenuating protein breakdown during exercise.” American Journal of Physiology-Endocrinology And Metabolism 267.6 (1994): E1010-E1022.
  18. Nair, K. S., R. G. Schwartz, and S. T. E. P. H. E. N. Welle. “Leucine as a regulator of whole body and skeletal muscle protein metabolism in humans.”American Journal of Physiology-Endocrinology And Metabolism 263.5 (1992): E928-E934.
  19. Alvestrand, A., et al. “Influence of leucine infusion on intracellular amino acids in humans.” European journal of clinical investigation 20.3 (1990): 293-298.
  20. Silva, Luciano A., et al. “Taurine supplementation decreases oxidative stress in skeletal muscle after eccentric exercise.” Cell biochemistry and function 29.1 (2011): 43-49.
  21. Zhang, M., et al. “Role of taurine supplementation to prevent exercise-induced oxidative stress in healthy young men.” Amino acids 26.2 (2004): 203-207.

Click to comment
To Top
shares