Six Star Pre-Workout Explosion Review

Pre-Workout Explosion is the most recent release from Six Star Pro Nutrition. Clearly the brand is going for a simple and safe approach (the only stimulant is Caffeine)…

Six Star Pre-Workout Explosion



Beta-Alanine is a precursor to the amino acid Carnosine, which functions as a lactic acid buffer, capable of reducing fatigue in the working muscle. Although it takes time to accumulate in muscle tissue, Beta-Alanine supplementation is a highly effective way of increasing muscular Carnosine levels and can take effect in as little as two weeks.

A 2002 study from the “Japanese Journal of Physiology” which measured the Carnosine levels of sprinters found that individuals with higher muscular Carnosine levels exhibited higher power output in the latter half of a 30m sprint (due to less lactic acid build-up). Multiple studies have confirmed that Beta Alanine supplementation increases muscular Carnosine in a dose dependent manner. In particular, a 2012 study published in “Amino Acids” found that subjects who consumed 1.6 or 3.2 grams of Beta Alanine daily experienced significant increases in muscle Carnosine in as little as two weeks, with the higher dose achieving a higher concentration of Carnosine.

Preworkout Explosion contains 1500mg of Beta-Alanine per serving, meaning two servings would yield a more or less clinically effective dose.

Creatine Monohydrate

Creatine has the ability to rapidly produce ATP (cellular energy) to support cellular function (as in exercise). It has been studied more extensively than any other performance enhancing supplement, and has consistently been demonstrated to increase power output as well as muscle size, with maximum benefit achieved at around 8 weeks of consistent supplementation. During high intensity exercise, Creatine is used for energy which tends to spare the glycogen that would normally be used. Since lactic acid is a by-product created when glucose is burned for energy, Creatine may also indirectly reduce lactic acid build-up which poses a secondary mechanism by which Creatine can potentially enhance performance.

It is generally recommended to consume 5 grams per day but lower doses (3 grams) can still be effective if consumed over a longer period of time. 2 grams daily has been demonstrated to maintain Creatine levels (but not increase them) in athletes. The most common form of Creatine is Creatine Monohydrate, which is formed by dehydrating a solution of Creatine, where a single water molecule remains bound to the Creatine powder.

Preworkout Explosion contains a pretty sub-standard 1500mg dose, meaning even in multiple-serving territory, users are not likely to gain the complete benefit of Creatine.

Arginine Alphaketogluturate

Arginine is a non-essential amino acid that acts as a precursor to Nitric Oxide and the AKG (Alpha Ketogluturate) form is alleged to be better absorbed than standard L-Arginine.

However, recent studies indicate Arginine may not be all it’s cracked up to be, with a 2012 study from the “Journal of the International Society of Sports Nutrition” finding that subjects performed worse after receiving 3700mg of Arginine Alpha-Ketoglutarate prior to resistance training, compared to placebo. Due to the relatively small size of this study, it cannot be considered conclusive, but it certainly does not lend credibility to the notion that Arginine AKG is a superior form of Arginine.

While most studies have failed to prove that Arginine (in any form) supplementation increases exercise performance, a 2011 double-blind placebo controlled study from “Sports Medicine” found that supplementation with 6 grams of L-Arginine increased muscle blood volume post-workout, but did not increase intra-workout strength.

Ultimately, the alleged (unproven) benefits of Arginine are the actual (proven) benefits of Citrulline, so we’re not really sure why supplement companies keep insisting that Arginine is of any value in pre-workout supplements. This refusal to admit the facts most likely has to do with the fact that Arginine is much cheaper than Citrulline (on a per gram basis). Unfortunately, Six Star Pro Nutrition (MuscleTech) has been pretty stubborn about abandoning Arginine, with the Preworkout Explosion formula containing 1100mg per serving.

Caffeine Anhydrous

Caffeine is a well-established ergogenic aid, oral consumption of which triggers the release of Catcholamines (Noradrenaline, Dopamine, Adrenaline, etc.), generally inducing a state of increased alertness, focus, and perceived energy. Many studies have concluded that pre-workout Caffeine consumption can enhance exercise capacity and muscle contractibility, in many cases quite significantly.

It should be kept in mind that habitual Caffeine consumption often results in tolerance, reducing the stimulant effects. We generally recommend that individuals seeking the full benefit of pre-workout Caffeine consumption try to limit their Caffeine intake at other times of the day. Given that Six Star Pro Nutrition, as a brand, is designed to appeal to the more mainstream (non stimulant-junky) user, a low 135mg dose of Caffeine per serving makes sense, but more experienced pre-workout users might be left disappointed (as if they weren’t already with the rest of the formula).


Choline, once inside the body, is converted into the neuroterransmitter Acetylcholine which is associated with many functions including (but not limited to) memory, attention, and muscle control. It is the neurotransmitter most closely associated with the “mind-muscle connection” (although this may be something of an over-simplification), and therefore of much interest to athletes and bodybuilders alike. While certain forms of choline may be associated with increased muscular power output (namely Alpha GPC), Choline Bitartrate is generally considered the least bioavailable choline source, though oral doses of 1000-2000mg have still been shown to increase serum Choline levels significantly.

A 2012 study published in the “British Journal of Nutrition” found that 1 gram of Choline Bitartrate was able to significantly increase, not only plasma choline levels, but also plasma Betaine levels. Betaine itself is commonly included in pre-workout formulas as it has been shown, in some cases, to increase power output. While Choline Bitartrate has not been studied in regards to performance enhancement, it is just as effective at increasing Betaine as supplemental Betaine, meaning it may very well convey the same performance enhancement benefits.

Unfortunately, given the position (after Caffeine) of Choline in the proprietary blend, its undeniable that the dose present in Preworkout Explosion is far less than optimal, and probably pretty negligible.


Tyrosine is a non-essential amino acid which serves as a precursor to the neurotransmitters Dopamine, Norepinephrine, and Epinephrine, the three of which are collectively referred to as ‘Catecholamines’. Tyrosine supplementation is commonly alleged (by supplement companies) to increase levels of these neurotransmitters. However, studies have failed to show the performance enhancement benefits generally associated with increases in Noradrenaline following Tyrosine supplementation. The real benefit of Tyrosine is its ability to restore levels of Noradrenaline when depletion occurs.

During exercise, the brain secreted Noradrenaline and extended exercise depletes levels, in some cases quite significantly. This explains why we tend to be less “sharp” directly after extended exercise sessions. Upon ingestion, Tyrosine essentially forms a pool, and when Noradrenaline levels get too low, the pool is drawn from to produce more. So, rather than directly improving cognitive ability, Tyrosine helps to maintain it during situations when it would normally decline. Average doses range from 2-5 grams but, as with the other ingredients, Preworkout Explosion contains far less than a clinical dose.


Despite its inclusion in energy drinks, Taurine is not a stimulant and does not increase perceived energy or focus. Rather, it is an amino acid with antioxidant properties with implications for exercise recovery as well as slight performance enhancement.

In a 2011 study from “Cell Biochemistry and Function” Taurine was shown to significantly reduce exercise-induced oxidative stress in skeletal muscle. These findings were consistent with those of an earlier (2004) study, published in “Amino Acids” which showed that Taurine may decrease exercise induced DNA damage, as well as “enhance the capacity of exercise due to its cellular protective properties”.

A recent 2013 study, also from “Amino Acids” noted a 1.7% improvement in 3k-time trial of runners after supplementing with Taurine, and these findings were further corroborated in a later 2013 study from “Applied Physiology, Nutrition, and Metabolism “ in which Taurine supplementation was able to increase strength as well as decrease oxidative muscle damage.

Unfortunately for the consumer, Taurine is yet another ingredient that is grossly under-dosed in the Preworkout Explosion formula.

Citrulline Malate

Citrulline is a precursor to the amino acid Arginine, which is a precursor to Nitric Oxide (NO). As demonstrated in a 2007 study, supplemental Citrulline is significantly more effective at raising plasma Arginine than supplemental Arginine itself, and while results with Arginine are mixed, Citrulline has demonstrated clear efficacy as a performance enhancer.

A 2002 study, published in the “British Journal of Sports Medicine” found that Citrulline Malate supplementation (6g/day for 15 days) significantly increased ATP production during exercise in healthy adult males.

A 2008 study from “The Journal of Strength & Conditioning” found that 8g of Citrulline Malate was able to progressively increase the amount of reps performed later in the workout (by as much as 52%) and significantly reduced muscle soreness.

A 2009 study, published in the “Journal of Free Radical Research”, found that 6 grams of Citrulline Malate given to male cyclists before a race increased “plasma Arginine availability for NO synthesis and PMNs priming for oxidative burst without oxidative damage”. A 2011 study, the subjects of which were rats, found that supplemental Citrulline increased muscular contraction efficiency (less ATP was required for the same amount of power), in-line with the findings of the above-mentioned human study.

The Bottom Line

While the ingredient profile of Preworkout Explosion is pretty similar to most standard pre-workouts out there, we have serious concerns about the dosing of some of the individual ingredients, namely Citrulline, Creatine, and Beta-Alanine. Ultimately, we have to recommend passing on this one, as there are simply too many much more effective formulas out there for roughly the same price to justify its use.  Pre-Workout Explosion may provide some Caffeine-sensitive users with some energy/focus but is severely lacking in the muscle-building/strength department.  If you’re interested in an effective muscle-building supplement that actually works, check out our Best Muscle Builders List

Still don’t know which pre-workout is right for you? Check out our Top 10 Pre-Workout Supplements List.

  1. Kraemer Zhang Wax, Benjamin, et al. “Acute L-arginine alpha ketoglutarate supplementation fails to improve muscular performance in resistance trained and untrained men.”Journal of the International Society of Sports Nutrition 9.1 (2012)
  2. Kraemer Zhang Alvares, Thiago S., et al. “L-Arginine as a Potential Ergogenic Aidin Healthy Subjects.” Sports Medicine 41.3 (2011): 233-248.
  3. Kraemer Hoffman J, et al. Beta-alanine and the hormonal response to exercise. Int J Sports Med. (2008)
  4. Kraemer Stellingwerff, Trent, et al. “Effect of two β-alanine dosing protocols on muscle carnosine synthesis and washout.” Amino Acids 42.6 (2012): 2461-2472.
  5. Kraemer Wilson, Jacob M., et al. “Beta-alanine supplementation improves aerobic and anaerobic indices of performance.” Strength & Conditioning Journal 32.1 (2010): 71-78.
  6. Kraemer Sale, Craig, Bryan Saunders, and Roger C. Harris. “Effect of beta-alanine supplementation on muscle carnosine concentrations and exercise performance.” Amino acids 39.2 (2010): 321-333.
  7. Kraemer Suzuki, Yasuhiro, Osamu Ito, Naoki Mukai, Hideyuki Takahashi, and Kaoru Takamatsu. “High Level of Skeletal Muscle Carnosine Contributes to the Latter Half of Exercise Performance during 30-s Maximal Cycle Ergometer Sprinting.” The Japanese Journal of Physiology 52.2 (2002): 199-205.
  8. raemer Graham, Terry E., Danielle S. Battram, Flemming Dela, Ahmed El-Sohemy, and Farah S.L. Thong. “Does Caffeine Alter Muscle Carbohydrate and Fat Metabolism during Exercise?” Applied Physiology, Nutrition, and Metabolism 33.6 (2008): 1311-318.
  9. Kraemer Graham, T. E., and L. L. Spriet. “Metabolic, catecholamine, and exercise performance responses to various doses of caffeine.” Journal of Applied Physiology 78.3 (1995): 867-874.
  10. Kraemer Graham, Terry E. “Caffeine and exercise.” Sports medicine 31.11 (2001): 785-807.
  11. Casey, Anna, and Paul L. Greenhaff. “Does dietary creatine supplementation play a role in skeletal muscle metabolism and performance?.” The American journal of clinical nutrition 72.2 (2000).
  12. Kraemer, William J., and Jeff S. Volek. “Creatine supplementation: its role in human performance.” Clinics in sports medicine 18.3 (1999): 651-666.
  13. Thompson, C. H., et al. “Effect of creatine on aerobic and anaerobic metabolism in skeletal muscle in swimmers.” British journal of sports medicine 30.3 (1996): 222-225.
  14. Feduccia Tayebati, Seyed Khosrow, et al. “Effect of choline-containing phospholipids on brain cholinergic transporters in the rat.” Journal of the neurological sciences302.1 (2011): 49-57.
  15. Feduccia Tomassoni, Daniele, et al. “Effects of cholinergic enhancing drugs on cholinergic transporters in the brain and peripheral blood lymphocytes of spontaneously hypertensive rats.” Current Alzheimer Research 9.1 (2012): 120-127.
  16. Feduccia Gimenez, Rosa, Josep Raich, and Juan Aguilar. “Changes in brain striatum dopamine and acetylcholine receptors induced by chronic CDP‐choline treatment of aging mice.” British journal of pharmacology 104.3 (1991): 575-578.
  17. Nojima, Hiroshi, Mari Okazaki, and Ikuko Kimura. “Counter effects of higenamine and coryneine, components of aconite root, on acetylcholine release from motor nerve terminal in mice.” Journal of Asian natural products research 2.3 (2000): 195-203.
  18. Bendahan, D., et al. “Citrulline/malate promotes aerobic energy production in human exercising muscle.” British journal of sports medicine 36.4 (2002): 282-289.
  19. Giannesini, Benoît, et al. “Citrulline malate supplementation increases muscle efficiency in rat skeletal muscle.” European journal of pharmacology 667.1 (2011): 100-104.
  20. Sureda, Antoni, et al. “Effects of L-citrulline oral supplementation on polymorphonuclear neutrophils oxidative burst and nitric oxide production after exercise.” Free radical research 43.9 (2009): 828-835.
  21. Shurtleff, David, et al. “Tyrosine reverses a cold-induced working memory deficit in humans.” Pharmacology Biochemistry and Behavior 47.4 (1994): 935-941.
  22. Pérez-Guisado, Joaquín, and Philip M. Jakeman. “Citrulline malate enhances athletic anaerobic performance and relieves muscle soreness.” The Journal of Strength & Conditioning Research 24.5 (2010): 1215-1222
  23. Abe, Kazuho, Yuzuru Abe, and Hiroshi Saito. “Agmatine suppresses nitric oxide production in microglia.” Brain research 872.1 (2000): 141-148. 9. Huxtable, R. J. “Physiological actions of taurine.” Physiological reviews 72.1 (1992): 101-163.
  24. Matsuzaki, Yasushi, Teruo Miyazaki, Syunpei Miyakawa, Bernard Bouscarel, Tadashi Ikegami, and Naomi Tanaka. “Decreased Taurine Concentration in Skeletal Muscles after Exercise for Various Durations.” Medicine & Science in Sports & Exercise34.5 (2002): 793-97.
  25. Matsuzaki, Yasushi., et al. “Decreased taurine concentration in skeletal muscles after exercise for various durations.” Medicine and science in sports and exercise 34.5 (2002): 793-797.
  26. Balshaw, Thomas G., et al. “The effect of acute taurine ingestion on 3-km running performance in trained middle-distance runners.” Amino acids 44.2 (2013): 555-561.
  27. Yatabe, Yoshihisa, et al. “Effects of taurine administration on exercise.” Taurine 7. Springer New York, 2009. 245-252
  28. da Silva, Luciano A., et al. “Effects of taurine supplementation following eccentric exercise in young adults.” Applied Physiology, Nutrition, and Metabolism 39.1 (2013): 101-104.
  29. Beyranvand, Mohamad Reza, et al. “Effect of taurine supplementation on exercise capacity of patients with heart failure.” Journal of cardiology 57.3 (2011): 333-337.
  30. Zhang, M., et al. “Role of taurine supplementation to prevent exercise-induced oxidative stress in healthy young men.” Amino acids 26.2 (2004): 203-207.
  31. Silva, Luciano A., et al. “Taurine supplementation decreases oxidative stress in skeletal muscle after eccentric exercise.” Cell biochemistry and function 29.1 (2011): 43-49.

Click to comment
To Top