Reviews

Genomyx EVOL Review

EVOL

 

[gard group=’1′]

EVOL is a pre-workout by Genomyx which features, in its stimulant blend, AMP Citrate. Unfortunately, we don’t expect this to remain the case for long as AMP Citrate is currently an FDA target.

CREATINE MONOHYDRATE:

Creatine is the most extensively studied ergogenic aid currently available, and by far one of the most effective at increasing both and muscle mass. Creatine’s primary mechanism of action is its ability to rapidly produce Adenosine Triphosphate (ATP) to support cellular energy. During high intensity exercise, Creatine is used for energy which tends to spare the glycogen that would normally be used. Since lactic acid is a by-product created when glucose is burned for energy, Creatine may also indirectly reduce lactic acid build-up which poses a secondary mechanism by which Creatine can potentially enhance performance.

The most common form, Creatine Monohydrate, is formed by dehydrating a solution of Creatine, where a single water molecule remains bound to the Creatine powder. No other form of Creatine has demonstrated any clear superiority over Creatine Monohydrate, so we generally recommend sticking with this particular form. The optimal dose of Creatine is generally around 5 grams per day, taken consistently (regardless of training days) for several weeks. Genomyx does not disclose the exact dose of Creatine found in the EVOL formula, but based on a 3290mg proprietary blend, we can assume there is no more than 1-2 grams, meaning multiple servings would be required to achieve a truly effective dose.

BETA-ALANINE:

Beta-Alanine is a precursor to the amino acid Carnosine, which functions as a lactic acid buffer capable of reducing fatigue in the working muscle. Though it takes time to accumulate in muscle tissue, Beta-Alanine supplementation, for at least two weeks, is highly effective at increasing muscular Carnosine concentration.

One study in particular that measured the Carnosine levels of sprinters found that individuals with higher muscular Carnosine levels exhibited higher power output in the latter half of a 30m sprint (because they had less lactic acid build-up). Multiple studies have confirmed that Beta Alanine supplementation increases muscular Carnosine in a dose dependent manner. In particular, a 2012 study published in “Amino Acids” found that subjects who consumed 1.6 or 3.2 grams of Beta Alanine daily experienced significant increases in muscle Carnosine in as little as two weeks, with the higher dose achieving a higher concentration of Carnosine. The doses used in this study, 1.6 and 3.2g, are the most common doses seen in supplements.

A 2008 study, published in the International Journal of Sports Medicine, noted improvements in power in resistance trained males using 4.8g daily for 30 days. This same 4.8 gram dose was also shown to increase muscular endurance in sprinters in a 2007 study from the “Journal of Applied Physiology”.

The highest dose we generally see in pre-workouts is 3.2g, with 4.8g being the absolute max we’ve ever seen. Given the weight of the proprietary blend, EVOL likely contains 800-1600mg, the higher end of which would technically be an effective dose.

AGMATINE SULFATE:

Recently, Agmatine has become quite pervasive in pre-workout supplements because of its alleged ability to regulate Nitric Oxide Synthase (NOS), an enzyme that catalyzes the production of Nitric Oxide (NO) from Arginine, and either elevate or reduce its presence, depending on the type of NOS.

There are several types of NOS, all which are required for the production of NO. Inducible NOS (iNOS) and Neuronal NOS (nNOS) are considered harmful because they elevate NO in immune cells (causing inflammation) and the brain (causing neuronal damage), while Endothelial NOS (eNOS) is considered beneficial as this is the kind which increases Nitric Oxide in the blood vessels, resulting in vasodilation. Agmatine has been demonstrated, in vitro, to up-regulate eNOS (the “good” NOS) while inhibiting the other NOS enzymes (the “bad” NOS). However, as mentioned above, Agmatine remains under-researched because it is a relatively new entrant in the supplement industry and it has actually never been studied in humans.

Because of the lack of human-based research, no optimal dose has been identified, leaving supplement companies to set the trend. Typically, pre-workouts contains between 500 and 1000mg Agmatine. While Genomyx doesn’t disclose the exact dose of Agmatine, we estimate EVOL contains anywhere from 250-500mg.

CHOLINE BITARTRATE:

Choline, once inside the body, is converted into the neurotransmitter acetylcholine which is associated with many functions including (but not limited to) memory, attention, and muscle control. It is the neurotransmitter most closely associated with the “mind-muscle connection” (although this may be something of an over-simplification), and therefore of much interest to athletes and bodybuilders alike. While certain forms of choline may be associated with increased muscular power output (namely Alpha GPC), Choline Bitartrate is generally considered the least bioavailable choline source, though oral doses of 1000-2000mg have still been shown to increase serum choline levels significantly.

The amount of Choline in EVOL is likely, at most, a few hundred mg, which may provide some marginal benefit.

CAFFEINE:

Caffeine triggers the release of Catecholamines (i.e. Noradrenaline, Adrenaline, Dopamine) which, in addition to enhancing focus and alertness, are inherently pro-lipolytic. Unfortunately, habitual Caffeine consumption tends to lead to tolerance, making it less and less effective as time goes on. That being said, Caffeine may be synergistic with other stimulants and tends to increase perceived energy, leading to more intense workouts.

Unfortunately, Genoxym does not disclose the amount of Caffeine present in the EVOL formula, but we’d estimate it contains anywhere from 100-250mg.

AMP CITRATE:

4-amino-2-methylpentane citrate, also known as 1,3 dimethylbutylamine, bares striking chemical similarities to 1,3 dimethylamylamine (DMAA), the compound that became wildly popular among pre-workouts and fat-burners before being banned by the FDA. Like DMAA, very little is known about 1,3 dimethylbutylamine, other than that it has a very similar chemical structure so it should have similar effects. Anecdotal reports of 1,3 dimethylbutylamine indicate the effects are similar, though perhaps not as overwhelmingly potent, and many are calling it “the next DMAA”. Unfortunately, until more studies are published, we really won’t know too much about this compound, the benefits or the pitfalls. Genomyx has certainly been a first mover with regards to AMP-Citrate, but only time will tell whether this ingredient meets up to the hype.

THE BOTTOM LINE:

EVOL contains a few standard pre-workout ingredients (Creatine, Beta-Alanine, Agmatine), but the main attraction seems to be the addition of AMP Citrate, which has recently received a lot of attention as a possible replacement for DMAA. That being said, the jury is still out on AMP Citrate and, with absolutely no studies in existence, it’s something you’ll have to try for yourself to make up your mind. Given an overall proprietary blend of 3290mg, some of the ingredients in EVOL (namely Creatine) may be under-dosed, requiring at least two servings to derive substantial benefit. At about 75 cents per serving, EVOL is neither a bargain nor a rip-off, but ultimately it just doesn’t jump out as particularly special in any way.

REFERENCES
  1. Kraemer, William J., and Jeff S. Volek. “Creatine supplementation: its role in human performance.” Clinics in sports medicine 18.3 (1999): 651-666.
  2. Casey, Anna, and Paul L. Greenhaff. “Does dietary creatine supplementation play a role in skeletal muscle metabolism and performance?.” The American journal of clinical nutrition 72.2 (2000).
  3. Thompson, C. H., et al. “Effect of creatine on aerobic and anaerobic metabolism in skeletal muscle in swimmers.” British journal of sports medicine 30.3 (1996): 222-225.
  4. Derave, Wim, et al. “β-Alanine supplementation augments muscle carnosine content and attenuates fatigue during repeated isokinetic contraction bouts in trained sprinters.” Journal of applied physiology 103.5 (2007): 1736-1743.
  5. Hoffman J, et al. Beta-alanine and the hormonal response to exercise. Int J Sports Med. (2008)
  6. Stellingwerff, Trent, et al. “Effect of two β-alanine dosing protocols on muscle carnosine synthesis and washout.” Amino Acids 42.6 (2012): 2461-2472.
  7. Wilson, Jacob M., et al. “Beta-alanine supplementation improves aerobic and anaerobic indices of performance.” Strength & Conditioning Journal 32.1 (2010): 71-78.
  8. Sale, Craig, Bryan Saunders, and Roger C. Harris. “Effect of beta-alanine supplementation on muscle carnosine concentrations and exercise performance.” Amino acids 39.2 (2010): 321-333.
  9. Suzuki, Yasuhiro, Osamu Ito, Naoki Mukai, Hideyuki Takahashi, and Kaoru Takamatsu. “High Level of Skeletal Muscle Carnosine Contributes to the Latter Half of Exercise Performance during 30-s Maximal Cycle Ergometer Sprinting.” The Japanese Journal of Physiology 52.2 (2002): 199-205.
  10. Mun, Chin Hee, et al. “Regulation of endothelial nitric oxide synthase by agmatine after transient global cerebral ischemia in rat brain.” Anatomy & cell biology 43.3 (2010): 230-240.
  11. Morrissey, Jeremiah J., and Saulo Klahr. “Agmatine activation of nitric oxide synthase in endothelial cells.” Proceedings of the Association of American Physicians 109.1 (1997): 51-57.
  12. Abe, Kazuho, Yuzuru Abe, and Hiroshi Saito. “Agmatine suppresses nitric oxide production in microglia.” Brain research 872.1 (2000): 141-148.
  13. Nojima, Hiroshi, Mari Okazaki, and Ikuko Kimura. “Counter effects of higenamine and coryneine, components of aconite root, on acetylcholine release from motor nerve terminal in mice.” Journal of Asian natural products research 2.3 (2000): 195-203.
  14. Costill, D. L., Gl P. Dalsky, and W. J. Fink. “Effects of caffeine ingestion on metabolism and exercise performance.” Medicine and science in sports 10.3 (1977): 155-158.
  15. Feduccia Tayebati, Seyed Khosrow, et al. “Effect of choline-containing phospholipids on brain cholinergic transporters in the rat.” Journal of the neurological sciences302.1 (2011): 49-57.
  16. Feduccia Tomassoni, Daniele, et al. “Effects of cholinergic enhancing drugs on cholinergic transporters in the brain and peripheral blood lymphocytes of spontaneously hypertensive rats.” Current Alzheimer Research 9.1 (2012): 120-127.
  17. Feduccia Gimenez, Rosa, Josep Raich, and Juan Aguilar. “Changes in brain striatum dopamine and acetylcholine receptors induced by chronic CDP‐choline treatment of aging mice.” British journal of pharmacology 104.3 (1991): 575-578.

Click to comment
To Top
shares